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Lecture 6: Martingales Convergence

Lecturer: Toannis Karatzas Scribes: Heyuan Yao

6.1 Supermartingale Convergence

We posit now the following intuition:
Supermartingales are the probabilistic analogues of decreasing functions.

If we think of this aphorism at face value, we are led to conclude that supermartingales bounded from below

must converge.

A spectacular result of DooB turns this intuition into mathematics, by showing that "bounded from below”

means here

K = sup E(X,) < 0. (6.1)
meENy

Theorem 6.1 (DooB Supermatingale Convergence) For every supermartingale X = (Xp)nen, that

satisfies the above condition (6.1), the limit

Xo = lim X,

n— oo

exists P-a.e., and is integrable: E|X|< 0.

In particular, every nonnegative supermartingale converges. The proof uses the following, ingenuous inequal-
ity.
Lemma 6.2 (Doon’s Upcrossing Inequality) In the above context,

E(X, —a)” < la|+E(X,,)~
b—a - b—1

E[Un(a,b; X)] < ;a<b, neN. (6.2)

Here, U, (a,b; X) is the total number of upcrossings, from below a € R to above b € R, b > a, that the

sequence X has completed by time t = n.
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Here, we introduce the stopping times
70 =0, 71 ;= min{k : Xy, < a} 7o :=min{k > 7 : X, > b}

and inductively

Tom—1 = min{k > 7o, : Xi < a} Tom, := min{k > 101 : Xi > b},

as well as
max{m € N: m,, <n}; ifm<n
Un(a,b; X) =
0; if o > n.

For instance, in Figure 6.1, U, (a,b; X) = 2.
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Figure 6.1: Sample path of X.

Quite obviously n — Uy,(a,b; X) is increasing, so

Usol(a,b; X = lim 1 U,(a,b; X)

n—oo

exists in N U {oo}: the total number of times X’ crosses from below a to above b, during its lifetime.

Needless to say, a similar inequality holds for submartingales, if you replace upcrossings by downcrossings,

and negative parts by positive parts.

Proof: [Lemma 6.2] Think of X,, as the prove of an asset (oil, gold,...) on day ¢t = n; and of yourself as

investor. You set yourself to thresholds, a (low) and b (high), and adopt the following strategy: You buy
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one share on the first day the price falls to or below the threshold a; and keep buying one share a day, for
as long as the price stay below the level b. Once this upper level is reached or exceeded, you exit; and you

remain on the side-lines up until the next deop to the level a or below; and so on. Formally, you strategy is

1; if 7, < Typt1, for some odd m
0; = ,
0; if 7, < Typy1, for some even m

and satisfies

{0; =1} = Upen{mor—1 < J < mor} = Uken | {mon—1 < j} —{mon—1 < j} | € Fj-1.
€Fj1 €Fj-1

This is because all the 7’s are stopping times. As a consequence © = {6;},cn is nonnegative, predictable.

What is the P&L ("profits and losses”, "value”, ...) resulting form this strategy? Quite obviously,
Yo=0; Yy= (0 X), Ze X;1) (neN)

(the transform of the supermartingale X by the nonnegative, predictable ©, thus a supermartingale itself),

as well as

Y, >Up(a,b; X)(b — a) — you make at least this amount on each upcrossing that gets completed.

—(a—X,)" — the most you can lose on an upcrossing still in progress on day t = n.
The supermartingale property gives now
0=EYy >EY, > (b—a)E[U,(a,b; X)] = E(X,, —a)™.

< |a|+K

Proof: [Theorem 6.1] Letting n — oo in the inequality, we get E[Us(a,b; X)] , by Monotone

Convergence. In particular,

P(Uso(a,b; X) = 00) = 0.

Now the event

A := {X does not converge in [—o0, 00|}
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can be expressed as a countable union

A= {hm inf X, < lim sup Xn} = Ua<b,(a,b)€Q2Aa,b

n—oo n—oo

Aoy = {lirr_1>iann <a<b<limsup X,} C {Ux(a,b; X) = co}.
n—oo

n—o0

Thus P(A,5) = 0 for each pair (a,b) as above, and P(A) = 0. In other words, X, = lim X, exists P-a.e.

n—o0

Now | X,|= X;F + X, = X,, + 2X,,, therefore E|X,,|< E(Xy) + 2K =: L < oo; and by Farou,

E|Xoo|= E(lim| X,,|) < liminf E|X,|< L < occ.
n n—oo

Closure: We say that X, X1, ..., Xo is an F-martingale (resp, supermartingale, submartingale) with last
element, if

E(Xm|]:n) =X, (resp, <, Z)
holds for every n € Ny and m =n + 1,...,00. Here we require X to be Foo := 0(UrenFi )-measurable.

For instance: every nonnegative supermartingale can be extended to a supermartingale with last element

Xoo =0.
Also, a LEvy martingale X,, = E(¢{|F,,), n € Ny, can thus be extended, with X, := E(¢|Fx)-

Indeed, by the tower property, we have

Proposition 6.3 For every nonnegative supermartingale X = (X, )nen, the limit Xoo = lim X, ewists, is
n—oo

real-valued, and the extended Xg, X1, Xa, ..., Xoo 1S a supermartingale with last element.

Proof: DooB supermartingale convergence gives the existence of X, and the rest is FaTou:

X, > liminf B(X,,|Fp) > E(liminf X, |F,) = E(Xoo|Fp), Vn € No.
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6.2 Jean Vuwre’s Theorem

We should be remiss, if we failed to mention at this point a striking characterization of events of zero

probability, due to Jean VILLE (1939):

Theorem 6.4 An event A € F has P(A) = 0 if, and only if, there exists a nonnegative martingale { M, } nen

with ILm M, (w) = oo wvalid for every w € Q.

I learned about this result only recently from my student Johannes RUr who, with collaborators, has proved
a very interesting extension of this result in the context of an entire family of probability measures (arXiv,

April 2022).

Quite a bit more generally, given any event £ € F, consider the collection Mg of nonnegative martingale

(My)nen, with liminf M,, > Ig (i.e., which eventually reach or exceed the level 1, if E occurs). Then
n— 00

P(E) = inf (M +0).
{Myp}neng€EME



