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6.1 Supermartingale Convergence

We posit now the following intuition:

Supermartingales are the probabilistic analogues of decreasing functions.

If we think of this aphorism at face value, we are led to conclude that supermartingales bounded from below

must converge.

A spectacular result of DOOB turns this intuition into mathematics, by showing that ”bounded from below”

means here

K := sup
m∈N0

E(X−
n ) < ∞. (6.1)

Theorem 6.1 (DOOB Supermatingale Convergence) For every supermartingale X = (Xn)n∈N0 that

satisfies the above condition (6.1), the limit

X∞ = lim
n→∞

Xn

exists P-a.e., and is integrable: E|X∞|< ∞.

In particular, every nonnegative supermartingale converges. The proof uses the following, ingenuous inequal-

ity.

Lemma 6.2 (DOOB’s Upcrossing Inequality) In the above context,

E [Un(a, b; X )] ≤ E(Xn − a)−

b − a
≤ |a|+E(Xn)−

b − 1 ; a < b, n ∈ N. (6.2)

Here, Un(a, b; X ) is the total number of upcrossings, from below a ∈ R to above b ∈ R, b > a, that the

sequence X has completed by time t = n.
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Here, we introduce the stopping times

τ0 ≡ 0, τ1 := min{k : Xk ≤ a} τ2 := min{k > τ1 : Xk ≥ b}

and inductively

τ2m−1 := min{k > τ2m : Xk ≤ a} τ2m := min{k > τ2m−1 : Xk ≥ b},

as well as

Un(a, b; X ) =

max{m ∈ N : τ2m ≤ n}; if τ2 ≤ n

0; if τ2 > n.

For instance, in Figure 6.1, Un(a, b; X ) = 2.

Figure 6.1: Sample path of X .

Quite obviously n 7→ Un(a, b; X ) is increasing, so

U∞(a, b; X = lim
n→∞

↑ Un(a, b; X )

exists in N ∪ {∞}: the total number of times X crosses from below a to above b, during its lifetime.

Needless to say, a similar inequality holds for submartingales, if you replace upcrossings by downcrossings,

and negative parts by positive parts.

Proof: [Lemma 6.2] Think of Xn as the prove of an asset (oil, gold,...) on day t = n; and of yourself as

investor. You set yourself to thresholds, a (low) and b (high), and adopt the following strategy: You buy
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one share on the first day the price falls to or below the threshold a; and keep buying one share a day, for

as long as the price stay below the level b. Once this upper level is reached or exceeded, you exit; and you

remain on the side-lines up until the next deop to the level a or below; and so on. Formally, you strategy is

θj =

1; if τm ≤ τm+1, for some odd m

0; if τm ≤ τm+1, for some even m
,

and satisfies

{θj = 1} = ∪k∈N{τ2k−1 < j ≤ τ2k} = ∪k∈N

{τ2k−1 < j}︸ ︷︷ ︸
∈Fj−1

− {τ2k−1 < j}︸ ︷︷ ︸
∈Fj−1

 ∈ Fj−1.

This is because all the τ ’s are stopping times. As a consequence Θ = {θj}j∈N is nonnegative, predictable.

What is the P&L (”profits and losses”, ”value”, ...) resulting form this strategy? Quite obviously,

Y0 = 0; YN = (Θ · X )n =
n∑

j=1
θj(X − j − Xj−1) (n ∈ N)

(the transform of the supermartingale X by the nonnegative, predictable Θ, thus a supermartingale itself),

as well as

Yn ≥Un(a, b; X )(b − a) → you make at least this amount on each upcrossing that gets completed.

− (a − Xn)+ → the most you can lose on an upcrossing still in progress on day t = n.

The supermartingale property gives now

0 = EY0 ≥ EYn ≥ (b − a)E[Un(a, b; X )] = E(Xn − a)+.

Proof: [Theorem 6.1] Letting n → ∞ in the inequality, we get E[U∞(a, b; X )] ≤ |a|+K
b−a , by Monotone

Convergence. In particular,

P(U∞(a, b; X ) = ∞) = 0.

Now the event

Λ := {X does not converge in [−∞, ∞]}
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can be expressed as a countable union

Λ = {lim inf
n→∞

Xn < lim sup
n→∞

Xn} = ∪a<b,(a,b)∈Q2Λa,b

Λa,b := {lim inf
n→∞

Xn < a < b < lim sup
n→∞

Xn} ⊆ {U∞(a, b; X ) = ∞}.

Thus P(Λa,b) = 0 for each pair (a, b) as above, and P(Λ) = 0. In other words, X∞ = lim
n→∞

Xn exists P-a.e.

Now |Xn|= X+
n + X−

n = Xn + 2X−
n , therefore E|Xn|≤ E(X0) + 2K =: L < ∞; and by FATOU,

E|X∞|= E(lim
n

|Xn|) ≤ lim inf
n→∞

E|Xn|≤ L < ∞.

Closure: We say that X0, X1, ..., X∞ is an F-martingale (resp, supermartingale, submartingale) with last

element, if

E(Xm|Fn) = Xn (resp, ≤, ≥)

holds for every n ∈ N0 and m = n + 1, ..., ∞. Here we require X∞ to be F∞ := σ(∪k∈NFk)-measurable.

For instance: every nonnegative supermartingale can be extended to a supermartingale with last element

X∞ = 0.

Also, a LÉVY martingale Xn = E(ξ|Fn), n ∈ N0, can thus be extended, with X∞ := E(ξ|F∞).

Indeed, by the tower property, we have

E(X∞|Fn) = E[E(ξ|F∞)|Fn] = E(ξ|Fn) = Xn.

Proposition 6.3 For every nonnegative supermartingale X = (Xn)n∈N0 the limit X∞ = lim
n→∞

Xn exists, is

real-valued, and the extended X0, X1, X2, ..., X∞ is a supermartingale with last element.

Proof: DOOB supermartingale convergence gives the existence of X∞, and the rest is FATOU:

Xn ≥ lim inf
m

E(Xm|Fn) ≥ E(lim inf
m

Xm|Fn) = E(X∞|Fn), ∀n ∈ N0.
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6.2 Jean VILLE’s Theorem

We should be remiss, if we failed to mention at this point a striking characterization of events of zero

probability, due to Jean VILLE (1939):

Theorem 6.4 An event A ∈ F has P(A) = 0 if, and only if, there exists a nonnegative martingale {Mn}n∈N

with lim
n→∞

Mn(ω) = ∞ valid for every ω ∈ Ω.

I learned about this result only recently from my student Johannes RUF who, with collaborators, has proved

a very interesting extension of this result in the context of an entire family of probability measures (arXiv,

April 2022).

Quite a bit more generally, given any event E ∈ F , consider the collection ME of nonnegative martingale

(Mn)n∈N0 with lim inf
n→∞

Mn ≥ IE (i.e., which eventually reach or exceed the level 1, if E occurs). Then

P(E) = inf
{Mn}n∈N0 ∈ME

(M + 0).


